Probabilistic Logic Programming

نویسنده

  • Thomas Lukasiewicz
چکیده

We present a new approach to probabilistic logic programs with a possible worlds semantics. Classical program clauses are extended by a subinterval of [0; 1] that describes the range for the conditional probability of the head of a clause given its body. We show that deduction in the defined probabilistic logic programs is computationally more complex than deduction in classical logic programs. More precisely, restricted deduction problems that are Pcomplete for classical logic programs are already NP-hard for probabilistic logic programs. We then elaborate a linear programming approach to probabilistic deduction that is efficient in interesting special cases. In the best case, the generated linear programs have a number of variables that is linear in the number of ground instances of purely probabilistic clauses in a probabilistic logic program.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probabilistic Logic Programming under Maximum Entropy Justus-liebig- Universit at Gieeen Ifig Research Report Probabilistic Logic Programming under Maximum Entropy

In this paper, we focus on the combination of probabilistic logic programming with the principle of maximum entropy. We start by deening probabilistic queries to probabilistic logic programs and their answer substitutions under maximum entropy. We then present an eecient linear programming characterization for the problem of deciding whether a probabilistic logic program is satissable. Finally,...

متن کامل

Probabilistic and Truth-functional Many-valued Logic Programming Justus-liebig- Universit at Gieeen Ifig Research Report Probabilistic and Truth-functional Many-valued Logic Programming

We introduce probabilistic many-valued logic programs in which the implication connective is interpreted as material implication. We show that probabilistic many-valued logic programming is computationally more complex than classical logic programming. More precisely, some deduction problems that are P-complete for classical logic programs are shown to be co-NP-complete for probabilistic many-v...

متن کامل

A Design Methodology for Reliable MRF-Based Logic Gates

Probabilistic-based methods have been used for designing noise tolerant circuits recently. In these methods, however, there is not any reliability mechanism that is essential for nanometer digital VLSI circuits. In this paper, we propose a novel method for designing reliable probabilistic-based logic gates. The advantage of the proposed method in comparison with previous probabilistic-based met...

متن کامل

Probabilistic and Truth-Functional Many-Valued Logic Programming

We introduce probabilistic many-valued logic programs in which the implication connective is interpreted as material implication. We show that probabilistic many-valued logic programming is computationally more complex than classical logic programming. More precisely, some deduction problems that are P-complete for classical logic programs are shown to be co-NP-complete for probabilistic many-v...

متن کامل

Probabilistic Inductive Logic Programming

Probabilistic inductive logic programming, sometimes also called statistical relational learning, addresses one of the central questions of artificial intelligence: the integration of probabilistic reasoning with first order logic representations and machine learning. A rich variety of different formalisms and learning techniques have been developed. In the present paper, we start from inductiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998